Multi-objective growth is a natural extension of the established optimization of a single-objective function. Many current questions are multi-objective in nature and their answer requires taking into account contradictory objectives. Usually, they propose any of potentially Pareto optimal resolutions. In-depth knowledge of the question is necessary to distinguish resolutions, eliminate undesirable one, and accept the solution(s) necessary by a decision-making process. It is well known that the multi-objective addition model has found many main applications in decision-making questions such as economic hypothesis, management science and manufacturing design. Many papers have existed published as a result of these requests to research optimality requirements, duality believes, and topological aspects of solutions to multi-objective addition problems. In this chapter, a multi-objective growth problem expression based on objective programming patterns solves the multi-objective problem which can tackle nearly large test systems. This planning optimizes the desired target while medicating the other aims as constraints. We will present a road disaster constraint in which the dossier from three networks are fuzzy values and the objective function adopts multiple aims. We will take nonlinear constraints and auxiliary constraints. Our optimum solution of the problem is established solving the linear set up problem with fluffy constraints by asking a fuzzy programming method. Our approach consists of giving a plain procedure for solving multi-objective fluffy programming questions.
Author(s) Details:
Azzabi Lotfi,
LASQUO/
Polytech Angers (ISTIA), University of Angers, France.
Azzabi
Dorra,
LASQUO/
Polytech Angers (ISTIA), University of Angers, France.
Abdessamad Kobi,
LASQUO/ Polytech Angers (ISTIA), University of Angers, France.
Please see the link here: https://stm.bookpi.org/RATMCS-V5/article/view/12214
No comments:
Post a Comment