Glossina fuscipes fuscipes touch be the primary tsetse headings of Trypanosoma brucei gambiense, the cause of Human African Trypanosomiasis (HAT), in South Sudan, where the HAT Control Strategy does not contain a vector control component. Priority domains for vector control maybe determined utilizing data on flee apparent mass/ trap/day. Insecurity and logistic problem create it impossible for heading control activities expected carried out, then, there is a need for an alternative form to assess heading population outside having material presence in fields. What is wanted under these circumstances are the material parameters that influence heading population density in the study field. Such variables are always applicable in meteorological stations in the Country. The study aims at providing facts on Glossina fuscipes fuscipes apparent bulk/trap/day in Kajo-Keji County by employing Multiple Linear Regression Models accompanying input from referring to practices or policies that do not negatively affect the environment variables (Atmospheric temperature, drizzle, relative humidity and wind speed). Tsetse field surveys were administered along 8 streams in the study extent from January to December 2012. To estimate fly obvious density/trap/era as a function of probable determinants for tsetse fly catches, twelfth linear reversion models were created. The in a pair samples T-test in SPSS was used to investigate the disagreement between the flee apparent densities presented by the models and the real densities from the survey. The top and lower limits of the model agreements were 5.97 and -11.65, respectively, and the guess values of the models showed the monthly styles of G. fuscipes fuscipes abundance. The model performs fit for the dossier and prediction of the flee apparent mass from the various predictors (F (4,11) =14.321, P <0.02). The densities concluded by the models acted not vary statistically (df=11; P = 0.69) from the real ones. This study manage contribute to specify information on the peaks of the heading abundance that grant permission guide strategic plans for tsetse and HAT control programmes in South Sudan. Multiple Linear Regression Models are strong and flexible and could find uses in the various facets of tsetse studies and provide beneficial information for tsetse and type of encephalitis control programmes in South Sudan.
Author(s) Details:
Yatta S. Lukou,
College
of Natural Resources and Environmental Studies, University of Juba, P.O. Box-82
Juba, South Sudan.
Mubarak
M. Abdelrahman,
Tropical
Medicine Research Institute (TMRI), P.O. Box-1304, Khartoum, Sudan.
Yassir O. Mohammed,
Veterinary Research Institute (VRI), P.O. Box-8067, Khartoum, Sudan.
Loro G. L. Jumi,
College of Natural Resources and Environmental Studies, University
of Juba, P.O. Box-82 Juba, South Sudan.
Erneo
B. Ochi,
College
of Natural Resources and Environmental Studies, University of Juba, P.O. Box-82
Juba, South Sudan.
Yousif
R. Suliman,
Department
of Breeding and Biotechnology, College of Animal Production, University of
Bahri, P.O. Box-1660, Khartoum North, Sudan.
Intisar E. Elrayah,
Tropical Medicine Research Institute (TMRI), P.O. Box-1304,
Khartoum, Sudan.
Please see the link here: https://stm.bookpi.org/CERB-V2/article/view/8890
No comments:
Post a Comment