Monday, 25 August 2025

Optoelectronic and Nanomechanical Properties of Sputtered Cu3 | Chapter 10 | Chemical and Materials Sciences: Research Findings Vol. 4

 

The pursuit of efficient, profitable, and eco-friendly materials is one of the undisputed pillars of optoelectronic devices research from its inception to the present day. Some materials, such as copper nitride (Cu3N), show great promise for promoting sustainable technologies. Cu₃N is a metastable semiconductor, as it decomposes into metallic copper (Cu) and nitrogen (N) when heated above 300 °C. This chapter presents the fabrication of Cu3N by reactive radio-frequency magnetron sputtering using a pure nitrogen (N2) environment to achieve quality Cu3N thin films. The film-deposition process was carried out using a single-chamber sputtering system from MVSystem LLC (Golden, CO, USA). Both substrate temperature and gas working pressure are evaluated to determine their impact on the optoelectronic properties. The aim is to highlight the absorption capability and the nanomechanical properties of that nitride binary compound. Several characterisation techniques, including X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), Raman spectroscopy, scanning electron microscopy (SEM), nanoindentation, and photothermal deflection spectroscopy (PDS), are used for such purposes. The results indicate the importance of both the substrate temperature and the working pressures to achieve a close to stoichiometric Cu3N material (Cu/N ratio ≈ 3) with the (100) plane as preferred orientation. Such stoichiometry begins to decrease as the substrate temperature increases. This demonstrates the clear influence of these sputtering deposition conditions. This fact is attributed to the nitrogen re-emission that happens at high substrate temperatures. In addition, Raman microscopy confirms the formation of the Cu-N bonds within the 628-637 cm−1 range. On the other hand, both the substrate temperature and the working pressure significantly influence the film hardness and the grain size, thus affecting the elastic modulus. Optical properties reveal tunable band gap energies, refractive indexes and Urbach energies as functions of the deposition parameters. These findings underscore the potential of Cu3N thin films in sputtering different energy applications such as photovoltaic, photodetectors and even hydrogen storage. This is mainly due to the tunable and advantageous properties of Cu3N and its resilience against defects. It can be considered that this research may pave the way for future advances in efficient and sustainable energy technologies.

 

Author(s) Details

María Isabel Rodríguez-Tapiador
Departamento de Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain and Universidad Rey Juan Carlos, Área de Ciencia e Ingeniería de Materiales, Tulipán, s/n, 28933 Móstoles, Spain.

 

Nuria Gordillo
Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

 

Alberto Jiménez-Suarez
Universidad Rey Juan Carlos, Área de Ciencia e Ingeniería de Materiales, Tulipán, s/n, 28933 Móstoles, Spain.

 

José Miguel Asensi
Departament de Física Aplicada, Universitat de Barcelona, Barcelona, Spain.

 

Fernando Bernabé Naranjo
Grupo de Ingeniería Fotónica (GRIFO), Departamento de Electrónica, Escuela Politécnica Superior, Universidad de Alcalá. Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain.

 

Elisabetta Carella
Departamento de Energía, División de Tecnología de Fusión, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain.

 

Marta Malo
Departamento de Energía, División de Tecnología de Fusión, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain.

 

Susana Fernández
Departamento de Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain.

 

Please see the book here:- https://doi.org/10.9734/bpi/cmsrf/v4/5679

No comments:

Post a Comment