The pursuit of efficient, profitable, and eco-friendly materials
is one of the undisputed pillars of optoelectronic devices research from its
inception to the present day. Some materials, such as copper nitride (Cu3N),
show great promise for promoting sustainable technologies. Cu₃N is a metastable
semiconductor, as it decomposes into metallic copper (Cu) and nitrogen (N) when
heated above 300 °C. This chapter presents the fabrication of Cu3N by reactive
radio-frequency magnetron sputtering using a pure nitrogen (N2) environment to
achieve quality Cu3N thin films. The film-deposition process was carried out
using a single-chamber sputtering system from MVSystem LLC (Golden, CO, USA).
Both substrate temperature and gas working pressure are evaluated to determine
their impact on the optoelectronic properties. The aim is to highlight the
absorption capability and the nanomechanical properties of that nitride binary
compound. Several characterisation techniques, including X-ray diffraction
(XRD), Rutherford backscattering spectrometry (RBS), Raman spectroscopy,
scanning electron microscopy (SEM), nanoindentation, and photothermal
deflection spectroscopy (PDS), are used for such purposes. The results indicate
the importance of both the substrate temperature and the working pressures to
achieve a close to stoichiometric Cu3N material (Cu/N ratio ≈ 3) with the (100)
plane as preferred orientation. Such stoichiometry begins to decrease as the
substrate temperature increases. This demonstrates the clear influence of these
sputtering deposition conditions. This fact is attributed to the nitrogen
re-emission that happens at high substrate temperatures. In addition, Raman
microscopy confirms the formation of the Cu-N bonds within the 628-637 cm−1
range. On the other hand, both the substrate temperature and the working
pressure significantly influence the film hardness and the grain size, thus
affecting the elastic modulus. Optical properties reveal tunable band gap
energies, refractive indexes and Urbach energies as functions of the deposition
parameters. These findings underscore the potential of Cu3N thin films in
sputtering different energy applications such as photovoltaic, photodetectors
and even hydrogen storage. This is mainly due to the tunable and advantageous
properties of Cu3N and its resilience against defects. It can be considered
that this research may pave the way for future advances in efficient and
sustainable energy technologies.
Author(s)
Details
María
Isabel Rodríguez-Tapiador
Departamento de Energía, Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain and Universidad
Rey Juan Carlos, Área de Ciencia e Ingeniería de Materiales, Tulipán, s/n,
28933 Móstoles, Spain.
Nuria
Gordillo
Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma
de Madrid, 28049 Madrid, Spain, Departamento de Física Aplicada, Universidad
Autónoma de Madrid, 28049 Madrid, Spain and
Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid,
Spain.
Alberto
Jiménez-Suarez
Universidad Rey Juan Carlos, Área de Ciencia e Ingeniería de
Materiales, Tulipán, s/n, 28933 Móstoles, Spain.
José
Miguel Asensi
Departament de Física Aplicada, Universitat de Barcelona,
Barcelona, Spain.
Fernando
Bernabé Naranjo
Grupo de Ingeniería Fotónica (GRIFO), Departamento de Electrónica,
Escuela Politécnica Superior, Universidad de Alcalá. Campus Universitario,
28871 Alcalá de Henares, Madrid, Spain.
Elisabetta
Carella
Departamento de Energía, División de Tecnología de Fusión, Centro
de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),
Madrid 28040, Spain.
Marta
Malo
Departamento de Energía, División de Tecnología de Fusión, Centro
de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),
Madrid 28040, Spain.
Susana
Fernández
Departamento de Energía, Centro de Investigaciones Energéticas,
Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain.
Please see the book here:- https://doi.org/10.9734/bpi/cmsrf/v4/5679
No comments:
Post a Comment