Friday, 19 June 2020

Mathematical Modeling on a Typical Three Species Ecology | Chapter 6 | Recent Studies in Mathematics and Computer Science Vol. 2

In this chapter, we discuss the stability analysis of mathematical modeling on a typical three species ecology. The system comprises of a commensal (S1), two hosts S2 and S3 ie., S2 and S3 both benefit S1, without getting themselves effected either positively or adversely. Further S2 is a commensal of S3 and S3 is a host of both S1, S2. Here all three species are having limited resources quantized by the respective carrying capacities. The mathematical model equations constitute a set of three first order non-linear simultaneous coupled differential equations in the strengths N1, N2, N3 of S1, S2, S3 respectively. In all, eight equilibrium points of the model are identified. The system would be stable, if all the characteristic roots are negative, in case they are real and have negative real parts, in case they are complex. Further, the trajectories of the perturbations over the equilibrium points are illustrated.

Author(s) Details

Dr. Bitla Hari Prasad
Department of  Mathematics, Chaitanya (Deemed to be University), Hanamkonda, Telangana-506001, India.

View Book :- http://bp.bookpi.org/index.php/bpi/catalog/book/182

No comments:

Post a Comment